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S T A B I L I T Y  A N A L Y S I S  O F  S T E A D Y  S U P E R S O N I C  F L O W  

R E G I M E S  P A S T  I N F I N I T E  W E D G E  

A. M. Blokhin and A. D. Birkin UDC 519.6:533.7 

Introduction. Two solutions of the gasdynamic problem of steady supersonic flow past a wedge (Fig. 1) are known 

to be possible (see, for example, [1]): the weak shock solution (the gas flow behind the shock wave is generally supersonic, 
i.e., u~ + v 2 > c2), and the strong shock solution (the gas flow behind the shock wave is subsonic, i.e., u 2 + v 2 < c2). Here 

u o and v 0 are the components of the velocity vector of the gas, and c o is the sound speed. Moreover, for the incident flow we 

have U= > c~., where c= is the sound speed. An unequivocal answer to the question as to which of the two solutions actually 
occurs has not been found so far, in spite of the" myriad papers addressing this problem. One of the possible ways of solving 

this question is discussed in [1] and consists in analyzing the stability of these steady gas flow regimes against small 

perturbations, i.e., in studying the asymptotic behavior of the solution of the linear mixed problem [see problem (1.1)-(1.4) 
in See. 1] for t --, oo. 

In the case when small perturbations depend on (besides the time) one "spatial" variable only, it has been rigorously 
shown in a number of papers (see, for example, [2, 3]) that the weak shock gas flow regime is stable against small 
perturbations, while the strong shock flow regime is unstable. 

In the general case, it has been shown in [4] that the basic solution corresponding to supersonic flow past a wedge with 
a weak shock wave is stable against small perturbations, provided the gas flow behind the shock wave is supersonic and that 

Ml(0) > 1 when tr < 0 < 0s. (0.1) 

Here, 

MI(0) = uo cos 0 + vo sin 0 
co 

At the same time, it has been found in [5] that the linear mixed problem [see problem (1.1)-(1.4) in Sec. 1] is also correct 
when 

+ vo < 

(at least for the case of small wedge angles a; see Fig. 1). However, the stability of such flow regimes was not proved in [5]. 

The present paper essentially supplements the investigations undertaken in [4, 5]. In Sec. 2 we prove that the linear 

mixed problem (1.1)-(1.4) from Sec. 1 does not have special particular solutions that increase as t ---, ao for the weak shock 

gas flow regime [including the case when condition (0.1) fails]. This result is also indirect confirmation of the stability of such 
a flow regime past at wedge for the case when condition (0.1) fails. 

In Sec. 3, for the strong shock regime we construct a special particular solution that increases as t ---, co, which, 

together with the results of [5], proves the instability of this supersonic flow regime past a wedge against perturbations. 

It should also be noted that the nonexistence of a steady flow regime with a strong shock wave for tapered bodies of 
finite thickness has been established in several papers (see, for example, [6, 7]) by qualitative reasoning. Plausible arguments 

are also given in [8, 9]. In our opinion, the instability of the strong shock regime for an infinite wedge as proved in Sec. 3 
and the results of [6-9] are mutually complementary. 
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1. P re l iminary  Informat ion .  The mathematical formulation of the problem of supersonic flow past a wedge has been 

given in [5]: in the region t, x > 0, and y > x tang the solution of the system of acoustical equations 

A U t  + B U ~  + C, ,U  v = 0, 

is found, subject to the boundary condition at the shock wave (x = 0) and at the wedge surface (y = tang) 

ul + du3 = O, ua + u4 = O, u~ = A--Fv, Ft + F v tg a = /~ua; 
/J 

U 2 -~- U 1 t g  a 

(1.1) 

(1.2) 

(1.3) 

and the initial data at t = 0 

u ( o ,  ~, y) = Uo(~, y), r ( o ,  u) = Fo(y). (1.4) 

Here, U(t, x, y) = (u 1 u 2 u 3 U4) T is the column vector of unknown functions, and x = F(t, y) is a small displacement of the 

shock front, where 

F(t ,  0) = Fo(0) = 0. (1.5) 

The matrices A, B, and C,, and the constants d, X, and/~ are given in [5]. We assume that the boundary conditions (1.2) and 

(1.3) conform not only with the initial data (1.4), but also with each other at points of the edge t _> 0 and x = y = 0. From 

Eqs. (1.2) and (1.3) with (1.5) we obtain 

[A + dtg:a]ua( t ,O,O) = O, t > 0, 

i.e., if D 1 = X + d tan2a # 0, then 

u ( t , 0 , 0 )  = 0, t >_ 0. (1.6) 

R e m a r k  1.1. The mixed problem (1 .1 ) - (1 .4 )  has been formulated for the case when the gas flow about a wedge with 

the shock wave directed along the y axis (Fig. 2) is chosen as the basic solution. 

Below, we make use of  an equivalent formulation, to which the mixed problem (1. I ) - ( 1 . 4 )  (see [5]) can be reduced: 

In the region t, x > 0, y > x tang the solution of the wave equation 

{M2L~ - L~ - r/~Iu3 = O, (1.7) 

is found, subject to the boundary conditions at the shock wave (x = 0) and at the wedge surface (y = x tang) 

LIL2}ua = 0; (1.8) {mL~ + .L~ - 
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{cos a r / -  sin a~}u3 = 0 (1.9) 

and the initial data at t = 0. Here 

M 2 
L I = - ~ ;  ll=r+tgao; L2=~(- - -y l l ;  

0 0 0 

XM 2 uo 
= 1 - M  2 (M ~ < 1);n = - N ;  m = Od+---T;---; M = - -  (see Fig. 2). 

P co 

Remark  1.2. We recall once more (see also Introduction) that in [5] the correctness of  the mixed problem (1.1)-(1 .4)  

was proved when the basic solution satisfies the inequality 

u•o+Vo 2 _ M 

Mo = V ~ - cos < 1  

and the angle a is sufficiently small, i.e., the post shock gas flow is subsonic (the basic strong shock solution. In [4] both the 

correctness of  the mixed problem (1 .1)- (1 .4)  and the stability of the basic solution against small perturbations were proved 

when the basic solution satisfies the inequalities M 0 > 1 and (0.1). 

Introducing new independent variables 

xt=x, y~=y-x tga  

and then omitting the primes on the variables, we rewrite problem (1.7)-(1.9):  

{M2(r + ()2 _ (( _ tg ar/)2 _ r/2}u3 = O, 

{(r  + tga~7)[r + ( + d(r + tgar / ) -  

M 2 I "~ '~2}~/'3 = O, 

( r / -  sin a cos a~)u3 = 0, 

t, x, y > O; 

z = 0 ;  

y = 0 .  

(1.10) 

We seek a particular solution of  problem (1.10) in the form 

~,aCt, ~ ,y)  = eW'~(~, Y), (1.11) 

where co is a certain (in general, complex) constant. Substituting (1.11) into (1.10) we obtain the problem for the function 
u(x, y) 
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{a~ ~ + 2b~rl+er] ~ +do~ + f } u = O ,  z,~t>0;  

{ a , o  2 - As~ ,  + o.A3o - ~ ~ ~ + .,2( ~ + d)} , ,  = 0. 

{ q -  sin~rcos~r~}u = 0, ~ = 0. 

z = 0 ;  (1.12) 

Here 

1 
a=/32; b = - t g o ;  c=  ; do=-2MSw; f = - w S M 2 ;  

COS 2 (7" 

tgSo ~qs ' I 
A, = DI+  M2 ; As= ~ t g a ;  A3= ( l + 2 d + ~ - - f )  tg O'. 

Problem (1.12) can be simplified by introducing canonical variables. Let M o > 1; then, transforming the canonical 
variables 

tga,~ 
yn = 2 --~2 x 

and introducing the new function v in place of the function u 

rM~ v'& " z"tga)w]v(x",Y"),f 

we have the problem for v (primes are omitted) 

v = x - v u u - Q S v = O ,  x >0,  0 <  y <  Boz; 

D l v ~  - Dsvru + Dav~ + D4vu + Dsv = 0, y = 0; 

v~ + Bov~ = O, y = Box, (1.13) 

where 

Now let M o < 

f~ = 3M v ~  rex' 
2---~ a,': A = M o ~ - I ;  D2= ~--~-tga" D 3 = - 2  .-~-tgcr; 

l~'lStgSa~ ~ v/&( 1! D'  = !3v/'~ f~" Os=(d~@2+A Bo = < ). 
M 3 ' . ~-7 ')f~ ; tgcr 

1. Transforming to the canonical variables 

tg~r 
x " = 9 + x  i~ 2 , .~" - ~ - x  

and introducing the new function v in place of u: 

M s 

we obtain from (1.12) the problem for v (primes are omitted) 

vr~ + v~u - fl~v = O, z > O, - B o z  < y < 0 ;  

Dlv~z + Dsv~  + Dav~ + D4vu + Dsv = O, y = 0 ;  

v~ + Bov~ = O, y = - B o z .  

(1.14) 

Here 

f l =  BMw;_ ~s=  1-Mo2; Bo= tg~-a; D s =  ~- f tga ;  
,q2 
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mr/ 
D3 = 2 ~ tga: 

Finally, let M o = 1. Assuming that 

D4 = ~ ' ~  Q, 

tga  
x 't = y + x 

t32 ' 

and introducing the new function v in place of u: 

Ds = (d ~-~ + ,~ ~ . / / ~ 2  M~tg2a~ fla. 

pt 

M 2 z "  ,~ "1 , ,, 
u = e x p  ( ~ r  ~ ) w m z  , r  

2tga j 

from Eqs. (1.12) we obtain the problem for v (primes are omitted) 

v ~  + dlvx =0 ,  x > O, O< y <  Box; 

D t v r x - A ' 2 v r u + B a v r + D a v ~ + D s v = O ,  y = O ;  

M2w 
% + - ~  t' = 0, y = Box, 

where 

(1.15) 

M 2 tg  a ~32 
dl = - 2 - - - 7 - - w ;  Bo =  tga ;  

w 2 
D a = -  a~ ( ,~_dtg2a) ;  D4=- /32w"  D s =  Dl 

tg a 2M 2' 4tg 2a" 

Remark 1.3. Using the well-known obIique shock relations (see, example [10]), one readily establishes that the 
inequality Mo> 0 can be rewritten as follows (see Fig 2): 

2 ( t g , a _  ~ - 1 3 -  ~ M} + > o. 
777)  M~, - 1 + ~ ., + i  

(1.16) 

Here M N = M~.cos6, Me, = Ur is the Math number of the incident flow, and 3' > 1 is the adiabatic exponent. At the 
same time, when the expression for the coefficients d and X for a polytropic gas (see [5]) are taken into account, the condition 
D 1 ~ 0 assumes the form 

tg26 _ 3' - I '~M4 + ( t g 2 6  _ 3 - 7 ~ x ~ 2  2 
7+1/  ~ i - ~ ] ' u  + 77-f r176 

Hence, for M 0 > 1 the condition D t ;e 0 is satisfied immediately by virtue of the inequality (1.16). In this condition the 
formulation of the problem (1.13) must be supplemented with the condition v(0, 0) = 0 (by virtue of (1.6). Furthermore, in 
accordance with [4] we assume that solutions of the mixed problem (1.1)-(1.4) for M o > 1 [and hence of problem (1.3)] are 
considered in the classes of functions that approach zero sufficiently rapidly as x 2 + y2 __, 0, together with their derivatives. 

2. Investigation of Problem (1.13). For simplicity we assume that the parameter in the problem (1.13) is f~ > 0 (in 
general, Re 12 > 13). Utilizing the method of Reimann functions (see [11, 12]), we find the value of the function v(x, y) at the 
point 1q0(Xo, 2/0) (Fig. 3): 

o Q 

2 . (~o )  = v(e)  + .(Q) + f . I R .  + BoR.I d.  + f[R~,~ - R-.I a . ,  
P o 

(2.1) 
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Fig. 3 

(R = Jo(iflKo) is the Riemann function, and K ~ = x,/(Xo - -  x) 2 - -  (Yo - -  y)2). Further, since 

4(  iftKo) 
R~ + BoR~ = in[vo-  v -  Bo(Zo - z)] Ko ' 

then, superposing first the points Mo and Q and then the points Mo and P, from (2.1) we obtain the relations 

xO 
f i~Boxo d6(if~K) 

f ( zo)  = g(xo) + { l + B o  It" g ( z ) -  do( i f l (z  - zo)) l (x)}  dz,  
0 

.7:0 

f {~nBo~o 4(mezs') Jo(~n,/Z1()l(L~)} ~, 
g(xo) = f (Lxo )  + L 1 + Bo ~l'rK f ( L z )  - 

0 

(2.2) 

where 
( ~o Bo~o ~. 

f ( zo )  = V(xo,O); g(zo) = v l + Bo' l + B o / '  

l(xo) = vv(xo,0); 1( = ~/(zo - x)(zo - Lx); L = 

We add the boundary condition at y = 0 to the expression (2.2): 

1 - Bo 
1 + B o  

Dl f " ( xo )  - D2l'(zo) + Daf '(zo) + Dal(zo) + Ds f ( zo )  = O. (2.3) 

We further investigate expressions (2.2) and (2.3) by means of the Laplace transform (see [13]). 

CO OO 

7(p)= f e-"o:(~o)dxo, C(p)= f e-'~ot(~o)~x~ 
0 0 

o o  

G(p) = f e-p~og(Zo) dzo 
0 

be the Laplace transforms of the functions f, l, and g, and let p = s o + i%. Applying the Laplace transform to (2.2) and (2.3), 
we have 

FI(p) G t q t p ~ -  1 
~'(P)= qo--~7 ' ' "  qo--~ c(p)' 

I , (p)  ~_[q(p)x ~ ~.(ff(P)~ (2.4) 
c (p )  = ~ ~k---s - qo(p) ~ L : '  

D2roF.(p) = Ll(p).T(p) + L2. 

Here, 

qo(P) = ~/p2 _ f~2; Fl(p) - qo(P) + Bop. p + Boqo(p). 
l + Bo ' q(P)= l + Bo ' 

qo(P) = ~/p2 _ L~2; I t(p)  = qo(P) + Bop. ~(p) = p + Boqo(p). 
1 - Bo ' 1 + Bo ' 
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t o ( p )  = p -  ~ f l ;  r ~ ( p )  = p - - - ;  ~ - - -  ( <  1) ;  
M t g a  

Ll(p) = r~dtg2a + rl2A; L2 = D2/(0) - Dl f ' (0 ) .  

Without loss of generality we set L 2 = 0 (see Remark 1.3). Then the system (2.4) can be rewritten in the form 

where 

C(p)  = 
LI(p) 

. . . .  [q(q(P))'~ :F(p) = t 2 t P ) ~  l , - - - -~"-) ,  

h(p) = ~ C T - / .  

F2(V) = 
D2ro(p)Ft(p) 

I2(q(p)). 
n:ro(p)qo(p) + LI(p) 

Consider the third equation (2.4'). We introduce here the new variable ~': 

(2.4') 

We then find in succession 

Here 

qo(P) = 2Q---(~ - ~) ,  q (p )=  ~ - ( ( + L ~ ) ,  ~ o ( q ( p ) ) = - ~ ( ( - L  ),  

( -  , q(q(P))= ~ -~ , a ( . ) =  + ) = _  
L' 

~q ((,  _ 1 . T( ( )R2(~ ' )  
x~(qcv), .-: ~ ~ ) ,  F2(p) = "T(r162 

T(( )  = (2 + 1 - 2~o(; To(() = (2 + 1 - 2 ( ;  
ma 

Rl(ff) = D2T(()(~ 2 - 1) + dtg2aT2(r + ATe; 

R2(()  = D2T(() (~  2 -  1 ) -  d t g 2 a T 2 ( ( ) -  ATe. 

Consequently, the last equation of the system (2.4') can be rewritten as 

(z)- (2.5) 

We now show that 3 r -= 0. To this end we require the Laplace transform 3 r (p) to be defined in the half-plane Re p 
> ft. The mapping 

1 

(2.6) 
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is then one-sheeted and takes the region Re p > fl onto a region D'  in the ~-plane, the branch of the root being chosen so that 

= 1. Using the boundary correspondence principle one can readily establish the form of the region D'  [this will be 
necessary below to justify the technique used to solve Eq. (2.5)]. Substituting p = fi + i-9 (.9 E R 1) into Eq. (2.6), we find 

the boundary of the region D'  in parametric form 

I / 1 V2fl)) 
~(ff) = Re ~ = 12 + r162 + 4f12~ cos ( i  arctg 

,( 
One can readily verify that ~-(.9) = ~'(-.9), i.e, aD'  is symmetric about the real axis of the ~" plane. As .9 approaches oo, we 

obtain 

~ ~ ~ ,  , l~fi ,  i.e., ~~,7. 

This result indicates that aD'  has asymptotes r/ = (1 + i)/j, ~ >__ 0. It is obvious, therefore, that D'  contains a subregion D" 

intercepted by lines of the form rl = (1 + ~i)~, ~ _> 0, where a > 0 is a constant, i.e., for any number ~" = roeir in D" 

it follows that D" contains the radial l = {~- : ~" = re i~o, r > r0}. 
Bearing all the foregoing in mind, we find a solution of Eq. (2.5) in the region D". To simplify our reasoning, we 

rewrite it as 

1 
9((:) = f(()9(ar  a = ; 1. Z (2.7) 

Here, g(~-) = .Y(~-), andf(~') = L(T(~')R2(~'/L))/T(~'/L)RI(~')). Replacing ~'by ak~ ", k = 1, 2, 3 ... . .  in (2.7) we obtain an array 

of functional equations valid in the region D", since ak~- E D" by virtue of the property of D" that is contains the radial l: 

g (ak( )  - f ( a k ( ) g ( ~  k+a ().  (2.8) 

Further, 

g ( r  --  g ( ~ )  g ( ~ )  g ( ~ j - - l r  j--1 

g(oJr g(a~) g ( a 2 r  " g(oJr -- H f(~k~) 
k=O 

or  

j - i  

g(() = g(~ l ' I  f ( a k ( )  �9 
k=O 

We recall that the function f(g') is known and defined in the region D' .  Letting j --, ~ ,  we obtain the formal solution of Eq. 

(2.7) 

oo 

g(~) = g ( ~ )  IX f (ak( )  = 9 (~ )A( ( ) .  (2.9) 
k-----O 

Note that each solution of Eq. (2.7) can be represented in the form (2.9), utilizing (2.8). Further, if g(~') is a solution 
of Eq. (2.7), the function 7g(~') (7 E C 1) is also a solution of this equation. As a result, all solutions of  Eq. (2.7) can be 
written in the form 
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9(()  = 7A(() .  (2.10) 

We now show that A(~') ---- 0. It then follows from (2.10) that the only solution of Eq. (2.7) is identically zero. To this end 

we consider the function 

..:r fi fl  - 

,__o . ,0 
(2.11) 

= L,+I T(() f I  ak ~k' 

where a k = R2(ULk+t),  b k = RI(ULk),  ~" is fixed, and n is a sufficiently large integer. It follows from (2.11) that 

IA,,(()I = ]L ~+1 T ( ( )  
,=o ._-o 

=ION.n(()[ I~I la , l<lOx. . . ( ()  t f i  I D , - D , I + z  
) T ~  - -  ' ' - -  - -  ,~=.'v+l k=:v+l ID2 T Dll s 

( I / 9 ,  - O , l  + ~.~.,-,v 
= I~;.(01 k iD=  + O~l - ~ )  ' O N , . ( ( )  = I. "+~ T ( ( )  a~ 

since obviously, a k --, D 2 - -  D 1 and b k --, D 2 + D 1 in the limit k - ,  oo, and so there exists an N such that the inequalities [ a k 

- - ( D  E - D 1 )  [ < e a n d  [ b  k - ( D  2 + D1) ] < e h o l d f o r k  > N, wheree  > 0 is a sufficiently small number. S inceD 1 

> 0 [inasmuch as M 0 > 1; see (1.16)], then 

[D7 - DI[ 

ID2 + Dxl 

Hence, the following inequality is satisfied for small values of e: 

< 1 .  

ID2 - Dll  + e 
< 1 - ~ < 1  

ID2 + Dal - E - 

(the value of 8 is sufficiently small). We finally have 

IA.(C)I ~ IOm.(QI(1 - 6) "-N 

for fixed N. 

Proceeding to the limit n --- oo, we have ] An(~- ) I --" 0, i.e., A(~') = Ao.(~') -- 0 in D". Continuing the function A(~') 

analytically into the region D ' ,  we find that A(~') -- 0 in D ' ,  so that Y(~') = 0 (consequently, >" (p) - 0 as well). From the 

system (2.4') we then obtain s (p) = G(p) = 0. Reverting to the original functions, we obtain f(xo) = g(Xo) = l(xo) = 0, 

and it follows immediately from (2.1) that v - 0 as well. 

3. Invest igat ion of  the  Spec t ra l  P rob lem (1.14). Let us consider the spectral problem (1.14). Introducing polar 

coordinates, we obtain 
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1 1 
v r r + ~ v o O + - r V r - f l 2 v = O ,  r > 0 ,  0 e ( - 0 o , 0 ) ;  

+ o , I ! . , -  + o,.+ o , : .+   ,v:o o:o  
T 

vo=O, r>O,  0 = - 0 o .  

(3.1) 

Here, tan 0 o = B o (B o is defined in Sec. 1). Note that functions of the form 

cos n(0 + 0o)Y.(- inr) ,  n > 2, 

satisfy the first and third equations of the system (3.1); moreover, they possess the necessary asymptotic behavior as r ---- 0 (see 
[5, 4]). We therefore seek a solution of problem (3.1) in the form 

vo(r,O) = ~ A.  cosn(0 + Oo)J.(-iflr).  
n>2 m 

We introduce (3.2) into the boundary condition at 0 = 0 and try to determine the constants An: 

~_, D 1 A , ( - "  ~ ,, . ifln , . . =fl) Jn(-=flr)cosnOo + y~ D~A~ Jn(-=llr)smnOo- 
r 

n>2  n>2  

- - n  

- ~ D2A.--~-J.(- i f lr)sinnOo + ~ DaA,~(-~f~)J~(-iflr)cosnOo+ 
n>_2 n>2 

(3.2) 

(3.3) 

- - B  

+ y~ D , A . - - J . ( - i l 2 r ) s i n n O o  + ~ DsA.J,=(-iflr)eosnOo = O. 
r n>_2 n>a 

Making use of the known relations between Bessel functions of different orders and their derivatives (see 13]), we eliminate 
the derivatives of the function Jn and terms of the form (1/rk)Jn in (3.3); we finally obtain 

y ~  [Da cos nOo - D2 sin nOo An + i 
4 2 n>_2 

D1 + 2/?s /73 cos (n - 3)00 +/94 sin (n - 3)00 
2 cos (n - 2)0oA,~_; - i 2 

+ D1 cos (n - 4)00 + D2 sin (n - 4)00 A.-4]  
4 Jn-2( - i f t r )  = O, 

/)3 cos (n - 1)0o - / 9 4  sin (n  - 1)0o 
A n - 1  --  

An-3+ 

where 

Let 

Then, assuming that 

m t g a .  /94 = /3L~ 
D 3 = 2  M ' M -'-3; 

L)s = (d h-i-$ + A ~ ) .  B2 M2 t g a a \  

A-2 = A _ I  = A o = A I  = 0 .  

i.e., 

D1 cos 200 - 192 sin 200 
A2 = 0, 

O ,  
tg 20o • A2 e R'\{0}, (3.4) 
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we find the remaining coefficients recusively. 
Remark  3.1. The coefficient D 1 is positive for weak shock regimes (see Remark 1.3), is negative for strong shock 

regimes, and is equal to zero for the regime corresponding to the maximum angle of  flow deflection at an oblique shock (see 

[3]). 
Let us verify that the constructed solution actually corresponds to the strong shock regime. To do this, it is sufficient 

to confirm that D 1 < 0 when condition (3.4) is satisfied. Writing the relation tan 200 = D1/D 2 in the form 

z2[M2(2 + d(1 + M2))] + z[M2a(1 + M2) - 

-(dM 2 + 2)(1- M2)]- aM2(1- M 2 ) = 0 ,  z = t g 2 a ,  

we find its roots z+ and z_.  We substitute the smaller root z_ into the expression for D 1 and prove the inequality D 1 < 0. 

We have the relation 

2 1 + M 2 4aM 2 

1+ -taM' 
< d 2 + dM 2 - AM 2 ------~-] + ~ (2 + d(1 + M2)), 

Squaring it, we obtain 

~4 
16A2M4 8adM2 (2 a M 2 ~ )  8ad2M2 " + < 

o r  

8AM 2 aM 2 \ 
(d + -.~--} (2 + d(X + M2)) < 0. ~2 p - ,  

The latter inequality is correct, since the conditions (d + ;kM2//3 2) > 0 and ~ < 0 are satisfied for a polytropic gas. 

Consequently, the constructed solution (formal so far) does indeed correspond to the strong shock flow regime. 

Remark  3.2. The relation tan2a = z_ is also an algebraic equation for 5 as a function of M~ (a and 6 are bound by 

a well-known relation (see [10] and Fig. 2)), which, for example, can be solved trivially for sufficiently large values of M~.  

Consequently, values of M~ and 6 can be found such that the relation (3.4) is satisfied. 
We now prove the convergence of  the series (3.2) subject to condition (3.4). Calculating the coefficients A n , we see 

that for large values of n 

IA.I ~ 2n-3 fiX /~3 r - 1)0o - D4sin(k - 1)0o + 

+(IDtl+lbsl)'~(b3+b4)" IDx cos kOo - D2 sin kOol' 
k=2 

where m and s increase with increasing n, and m + s _< n. We assume that D I cos k0 o - -  D 2 sin k0 o # 0, because if 

D 1 cos k0 o - -  D 2 sin k0 0 = 0, then the coefficient o f A  k is equal to zero, and this term will not appear in the series (3.3), i.e., 

such factors are not involved in the product. Further, it is obvious that I D1 cos k0 0 - -  D 2 sin k0 o I > b > 0 for all values 

of k (b is a constant independent of  k). Finally, I An I - a n, where a is a certain number. Let r be fixed. Since 

[vo(r, O)l < ~ [A~[ IJ , , (- i l2r)h IJ , , ( - i f l r ) [  < c ch(f/r) 
. > 2  - ( n -  1 ) ! '  
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and 

a? 
l~o(,-,e)l ~ ~ (,~= i)!" 

n>2 

Thus, the series (3.2) converges pointwise. Obviously, however, the series (3.2) converges uniformly in any region of the form 

D'  = {(r, 0) : 0 < r <__ r* < co, - 00  _< 0 _< 0}. Moreover, the function v0(r, 0) is infinitely differentiable in D' .  To obtain 

a "solution" in the initial region D = {(r, 0) : 0 < r < co, - 0  o < 0 < 0}, we set v(r, 0) - 0 in D\D' .  

Let us determine the eigenvalue to which the resulting "solution" corresponds. To do so, we integrate the first equation 

of (3.1) over the region D: 

J Ay dz dy = f~2 f v dz dy. 
D D 

Invoking the Gauss theorem, we obtain 

Q2 v dz dy = -~n dl = ~n dl + -~n dl, 
D OD OD 1 OD 2 

where aD 1 = {(r, 0) : r > 0, 0 = -00}; OD 2 = {(r, 0) : r > 0, 0 = 0}. The integral 

virtue of  the impermeability condition Then 

ov dl = 0 is equal to zero by 
OD1 

~176 But ~-g OD2 

n2 f v az ay = f ~ at. 

D aD 2 

Expressing av/ay from the condition at the shock wave, we find 

(3.5) 

Do 1 
b-y = D4 (D1v~. + D2v.y + D3v. + Dsv). 

Substituting (3.6) into (3.5) and making use of  the fact that 

v ,  v z ,  v~ ~ 0 and r --* 0 as r --~ o o ,  

we have 

f~ = Ds of,, v o192 dl 

D4 f vdz dlt 
D 

(3.6) 

(3.7) 

(3.8) 

Remark  3.3. The conditions (3.7) are satisfied for all solutions of the problem (3.1) (see [14]). 

Introducing the relation (3.2) into (3.8), we obtain 

L)5 
D4 

r* 
A,~ cos nOof Jn(-if~r) dr 

n>2 0 
l . s  

E A,,(sin neo)/n f rJ,,(-i12r) dr 
n>2 0 

(3.9) 
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Finally~ we have the algebraic equation for fl (the value of r* is fixed). We next investigate the solvability of  Eq.(3.9). To this 

end, we consider the function 

~, A,~cosnOo f J~( - i f l r )dr  
F(fL) = fz + ~s  n>_z o 

r* 
D4 E an(sinnOo)/n f rJ,~(-iflr) dr 

n>2 0 

Further, if A 2 is assumed to be real, then both A n and J n ( -  iflr) will be real for even order index and purely imaginary for odd 

index, i.e., F is a real function. As f~ ~ ,  the fraction is bounded, hence F (+  oo), and F(0) = s ~ ~ < "0. Then, 
~ D4 

considering F(fl) in the interval [0, B], where the value of B is sufficiently large, we infer that F(f~) is continuous therein and 

at the ends assumes values of  different signs for positive I) 5 (which, in turn, is possible for small values of  o). Furthermore, 

F~ ] r'=0 > 0, so that for sufficiently small values of  r* the function F(f2) increases monotonously. Consequently, the equation 

F(fl) = 0 has a single positive root ill, which can be found, say, by the bisection algorithm (see, for example [15]). We submit 

this root as the eigenvalue of problem (1.14). The formulas of Sec. 1 now imply that co > 0. As a result, no matter how small 

the initial data for problem (1.10) in the norm, ~ve still have unbounded growth of  the solution with time in any reasonable 

norm. 
Remark  3.4.As a matter of fact, the above solution does not have any properties that would be desirable in our case, 

since an a priori estimate guaranteeing the correctness of  the initial formulation of  the problem has been obtained in the class 

of functions in space W 2. Hence, these functions can be adjusted on a set of measure zero so as to be continuous (see, for 

example, [5]). The particular "solution" obtained in this section does not possess such a property (it has a line of  nonremovable 

discontinuity r = r*, - 0  0 < 0 < 0). 
The situation can be corrected if we consider a problem of the form 

1 1 fZ~v = 0, r" < r < r" + e, 0 E ( -0o ,  0); vr, + -~voo + rW - 

} , o,+0 Davrr + D2 VrO vo + Day r + + D'sv = O, 

r ' < r < r ' + e ,  0 = 0 ;  

v = 0,  r = r" + e ,  0 E ( - 0 o ,  0);  
,, = vo (r ' ,  e ) ,  r = r ' ,  0 E ( - 0 o ,  0) .  

(3.10) 

Here the primed coefficients differ from the unprimed in that they contain flz instead of  f~, and e is a small number chosen so 

that f~2 will remain positive (see the discussion below). 

Problem (3.10) is certainly solvable (see [14]). We denote its solution by v 1. Substituting the function 

vo for 0 < r < r ' ,  0 E (--0o,0); 
v =  Vl for r" < r < r ' + e ,  0E(--Oo,0) ;  

0 for r" + e < r, 0 E ( -0o ,0) ,  
(3.11) 

into Eq. (3.8) we find a new value of fix, which, in turn, is introduced into (3.2) and (3.10). After this is done, we consider 

the function v 1, which is analogous to (3.11), the only difference being that v I contains, instead of v 1, the solution of (3.10) 

corresponding to the number f~2, etc. Thus, the function v 0 can be regarded as an approximation of the particular "solution" 

of W 2 which increases exponentially with time. 
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